11th lecture

Quasi-steady electromagnetic fields and electromagnetic induction
I. Quasi-steady electromagnetic fields

Let us regard the first two of Maxwell’s equations:

rot H = j + (D/(t

(1)

rot E = - (B/(t

(2)

In a steady state all time derivatives were zero yielding the steady state Maxwell equations:
rot H = j 

(1)

rot E = 0

(2)

If we deal with electromagnetic fields changing in time then the time derivatives are not zero any more. Even in such a case we can apply an approximation when the so called quasi-steady conditions are met. 


We speak about quasi-steady conditions when the time derivative of the electric induction (the so called displacement current density)  can be neglected compared to j the conduction current density:
(D/(t  ((  j
The above condition is satisfied in good conductors until the frequency limit of 1018 Hz (s-1) and even in poor conductors until the frequency limit of 106 Hz. (We cannot apply the quasi-steady approximation in insulators or in vacuum, however, where the conduction current density is zero.) 
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Thus the quasi steady state can be characterized by the following conditions

In this case the first two of Maxwell’s equations:

rot H = j          

(1)

rot E = - (B/(t

(2)

II. The phenomenon of electromagnetic induction. Faraday’s induction law 
Historical Background 
Oersted’s and Ampére’s discoveries in 1820 gave a scientific support to the always suspected connection between electricity and magnetism. As a first step they found that the electric current creates a magnetic field surrounding the current (Ampére’s circuital law). It was logical to assume a reciprocal phenomenon when magnetism would create an electric field somehow. We have no evidence of experiments attempting to create electric field with magnetism but most probably there were such attempts. (Unsuccessful experiments are usually not recorded.) Steady magnets or magnetic fields cannot induce electricity, however. After 12 long years in 1832 it was Michael Faraday who solved the problem. He realized that to create an electric field with magnetism requires a magnetic field which is not steady but changing in time.  
Faraday’s law of electromagnetic induction

Experiment:  Large ammeter + coil  (Figure) 
In this experiment we apply a closed conducting loop. The ammeter is a part of that closed loop. Whenever we approach to this closed loop with the North or the South pole of a magnet the ammeter indicates a current in the loop. The sign of the current depends on the sign of the pole (North or South) and on the fact whether the pole is approaching or withdrawing. It is most important that the ammeter indicates a current only if the magnet is moving and the faster the motion the larger the current. We can conclude that the electromagnetic induction is proportional with the rate of the change in the magnetic field. A steady magnetic field even a very intense one cannot induce electric current in the loop.
How can we interpret the result of the above experiment? At a first glace the phenomenon looks familiar: electric current flowing in a closed loop like in the case of thermocouples or galvanic cells. There is, however, a fundamental difference between those experiments and the present one: in those cases there were so called charge separating or foreign forces (like chemical forces for example) while now we deal with electric forces only. The electric current  flowing in a closed circuit under electric forces exclusively. This means that the electric field E points always in the counterclockwise or in the clockwise direction: the electric field is vortex like. A vortex field can be characterized by its circulation (the circulation is the path integral of a vector field along a closed curve). The circulation of the electric field will be called as induced voltage Ui 
circulation = 
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because the line integral of the electric field is a voltage. (We can remember that in electrostatics and in the case of stationary fields the line integral of  E for a closed loop was zero. As our experiment shows, however, in the case of a changing magnetic field this is not true any more: an induced voltage appears.)  

The next step is to study how that induced voltage depends on the closed curve and on the rate of the magnetic field’s change? The experiments show that it is the flux (B of the the magnetic induction B what matters here:
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and the rate of the change in (B which determines the induced voltage. Thus Faraday’s law of induction can be written as:
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Finally we have to prove that Faraday’s law of electromagnetic induction is actually the global form of Maxwell’s second equation. To this end we can apply Stokes’ theorem for the left hand side of the last equation, and on the right hand side we can move the time derivative inside the integral (provided that the surface A is not moving). This way we obtain the following relationship:
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As the above two surface integral are equal for any surfaces not only the integrals but also the integrands (the functions being integrated) should be equal:
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which is the well known form of Maxwell’s second equation.

Finally an important remark: If the flux of the magnetic induction B changes on a surface A then on the closed curve G which is the edge of surface A a voltage will be induced even if that closed curve is not conductor. In this case, however, in the absence of a closed conducting loop, no current can flow. But closed E lines indicate the presence of the induced voltage even in these cases as well.
III. Neumann’s law
Experiment: slide (Figure)

In the previous paragraph we moved the time derivative inside the integral assuming that the surface is motionless. Now we are going to study the case when the change in the flux of B is not due to a change in B, but it is due to the motion of the 

boundaries of A.  According to Faraday’s law of electromagnetic induction:
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If A is moving then the time derivative cannot be moved inside the integral an the formula should be applied in its global form as is. In special cases, however, the general formula can be simplified. For example when A is a planar surface and B is homogeneous then the surface integral can be expressed as: 
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where (  is the angle between B and the normal vector n of the surface A . If B and ( are constant in the course of the movement of the surface A then
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It is a special case when a slide of length L is moving on a U shaped frame of conductor with a velocity v and v and L are perpendicular then

[image: image39.wmf].

cos

)

cos

(

dt

dA

B

dt

A

B

d

U

i

a

a

-

=

-

=

(The sign of the velocity –and this way the sign of the product Lv is positive if A is increasing and it is negative when A is decreasing.) If we assume that B is perpendicular to A (that is (=0, and cos(=1) we obtain Neumann’s law:
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IV. Lenz’s law. Eddy currents
Experiments: 1) Aluminum rings, 2) metals and magnet sliding down along a conductor slide, 3) Waltenhofen’s pendulum 4) Thomson’s gun
V. Mutual induction and self-induction 
Experiment: ammeter and voltmeter with a projector
In this experiment we apply two coaxial solenoids: an outer and an inner one. We control the electric current in the inner solenoid which is measured by an ammeter. A voltmeter measures the voltage in the outer solenoid. When we change the electric current in the inner solenoid an induced voltage appears in the outer one.
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The observed phenomenon can be explained by the electromagnetic induction. What is new here that the magnetic field is not the magnetic field of a magnet but it is due to the magnetic field of the inner solenoid. When we change its current its magnetic field is also changed and this change of the magnetic field induces voltage in the outer solenoid, which surrounds the magnetic field of the first one. The phenomenon is called as mutual induction.
Figure 11.1

To calculate the induced voltage let us regard Figure 11.1 On that Figure we can see the top view of the two solenoids (viewed them from above). The counterclockwise direction of the current flowing in the inner solenoid will be regarded as positive. In this case H - and consequently B too – points from the plain of the paper toward us according to the right hand rule. As a consequence if the current is increasing in the inner solenoid then  
[image: image2.wmf]dt

dI

  is positive and the derivative  
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  is also points toward us. The induced voltage, however, follows the left hand rule according to Faraday’s law of electromagnetic induction, thus the induced voltage in the outer solenoid will be positive in the clockwise direction. 

To explain more clearly the phenomenon for a short while let us regard a more simple case where both solenoids have only one coil (see Figure 11.2):
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Figure 11.2. 
If we increase the current in the inner coil with the potentiometer P then in the outer coil a vortical electric field pointing in clockwise direction.  will be induced. If we go around in the positive (counterclockwise) direction 
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This is because most of the induced voltage will appear on the high resistance voltmeter. This means that practically there is no electric field in the outer coil except the voltmeter. And this voltage according to the left hand rule will be negative (pointing clockwise) thus terminal B of the voltmeter will be positive while terminal A will be negative.
Now, if we return to the case when there are solenoids with coil numbers n1 (inner solenoid) and n2 (outer solenoid) then the induced voltage for one coil of the outer solenoid 
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The magnetic field within the inner solenoid can be calculated with the formula we already know:
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where I1 is the current and l is the length of the inner solenoid respectively. (We assume that the two solenoid have the same length l1=l2=l.) Let us assume that the space within the first solenoid is filled with a LIH material then
B = (H.
Now the induced voltage in one coil of the outer solenoid is 
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In the above formula we regarded that

1) As the field is homogeneous and parallel with the normal vector of the surface the surface integral is simply the product of the field strength and the surface area.
2) The flux is H1 not at the whole cross-section  A2 but only on A1 which is a part of A2. Outside of A1 the field is zero. Thus when we calculate the flux we have to use A1 only and not A2.  

3) Only I1 is time dependent everything else is constant.
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Finally if we want to calculate the induced voltage on the whole outer solenoid then we have to multiply the induced voltage for one coil Ui(for one coil) by n2: 
That is 

where we have introduced the concept of mutual inductance L21
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It can be proved (think about how?) that if the solenoids change roles (we change the current in the outer solenoid and measure the voltage in the inner one) the mutual inductance calculated for that case will have the same value, that is 
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Self-induction 
Self induction is a special case of the mutual induction when the voltage is induced in the very same solenoid where the current is varied. This is the case in every solenoid as if change the current then the magnetic field in the solenoid changes and this changing magnetic field induces voltage in the solenoid itself. 
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where L is the so called self-inductance, or self induction coefficient.

[image: image52.wmf]A

1

A

2


VI. Transients in LR circuits: 

growth and decay of current in an inductor

Switching on the electric current 

Experiment: closing a switch in two different circuits.

a)circuit with R only and b) another one with R and L


Let us regard the transient behavior of two different circuits depicted in the following Figure:
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a)                                     b)
Growth of the current   after closing switch K

a) without self- inductance,    b) in the presence of a self- inductor L
In the above Figure a) the circuit consists of a battery, a resistor, and a switch. When the switch is open there is no current. If we close the switch a steady state current 

( I = ε/R ) starts to flow immediately: the current „jumps up” to its final value as soon as the switch is closed. (In a real circuit the I = I(t) function cannot be a  discontinuous one, however: in real circuits the jump is a very fast but continuous rise of the current. This is because a real circuit cannot be completely free of inductances. A small inductance is always present in any circuit. Thus it is more realistic to say that the inductance of circuit a) is much smaller than that of circuit b).)


Anyway, in a steady state the circulation of the vortex free electric field E is zero and the current can be calculated by applying Kirchoff’s voltage law:
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(Here dl denotes the infinitesimal displacement vector as we move along a quasi one dimensional conductor like a wire.)

Now, applying Ohm’s law (UR = I(R ) and the concept of the electromotive force 

(UBATTERY = - ε ) we can write:
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When we close the switch in circuit b) the rise of current will be more gradual: the higher is the inductivity L the slower will be the change. If R and ε  is the same in both circuits then the final steady state current will be the same in both circuit independently of L. In the transient state, however, they behave differently. This is because Kirchhoff voltage law assumes a vortex free electric field 

rot E = 0

and that assumption is valid in the steady state only. In the transient state according to Maxwell’s second equation

rot E = - (B/(t ( 0.

If we apply the above equation in an integral form (which is actually Faraday’s law of electromagnetic induction) we can write 
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where L is the inductance of the whole circuit. If we have a solenoid in the circuit then the inductance of the circuit is due mainly to that solenoid, that is

L ( LSOLENOID

is usually a good approximation. We can apply again Ohm’s law, and the concept of electromotance, moreover we can assume that the solenoid has no ohmic resistance (in this case there is no electric field inside the solenoid): 
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Thus we arrive finally to the following simple differential equation: 
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Before we solve the above differential equation let us rearrange it into the following form:
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This form resembles to the well known voltage law of Kirchhoff except we have an additional voltage term the „inductive voltage” 
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 . How can we interpret this voltage? Let us imagine a closed loop along the electric circuit as before, but between point 2 and 3 –that is between the two ends of the solenoid – we choose a path not inside the wire of the solenoid but completely outside of the solenoid. As this loop does not surround any significant magnetic field (which is significant only in the solenoid) we can assume that B, and consequently also 
[image: image12.wmf],

t

¶

¶

B

 is zero for this loop lying outside of the solenoid. Substituting these considerations into our formulae: 


[image: image13.wmf].

0

0

0

1

3

3

,

2

2

1

=

+

+

Þ

=

×

+

×

+

×

Þ

=

×

¶

¶

=

×

ò

ò

ò

ò

ò

TELEP

L

R

KÍVÜL

U

U

U

d

d

d

d

t

d

r

E

r

E

r

E

A

B

r

E


This way we can see that the „inductive voltage” (the voltage measured between the two ends of the solenoid outside ) 
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Thus it is a most important conclusion that Kirchhoff’s voltage law can be applied even for a transient circuit, which might contain solenoids, but we have to go along the circuit in such closed loops whose paths lead outside of the solenoids. In this case the inductive voltage measured outside on a solenoid is  
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Now if we return to the solution of the differential equation 
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it is an equation where the variables can be separated. The solution of that equation which satisfies the initial conditions as well can be written in the following form:
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Switching off the electric current 


Let us regard the following circuits:

[image: image18.png]



a)                                              b)
Switching off the electric current flowing through an inductor

a) the whole circuit ( K is closed) b) the „remaining” circuit  after K is opened 
Let the switch K be closed at the beginning (Figure a)). In this case the steady state current flowing through the inductor L ( whose ohmic resistance is zero or negligible) is I0:
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At the same time no current will flow through the resistor R connected parallel with the inductor. This is because the inductor has no resistance thus in a steady state all current will flow through the inductor. Now let us open the switch K. At this moment the current flowing through 
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 drops to zero immediately. This is not the case, however, in the „remaining” circuit shown in Figure b). The current cannot drop to zero instantaneously on the inductor because that would mean an infinite rate for dI/dt, which would induce an infinite voltage. Instead, the current decreases gradually flowing through now the resistor R. We can apply Kirchhoff’s voltage law for the remaining circuit of Figure b) where the resistor R and the inductor L form a closed loop: 
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The solution of the above differential equation satisfying the initial condition I = I0 is:
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Energy of an inductor and that of the magnetic field


The energy stored in the magnetic field of an inductor with current I0 means its ability to perform work. Thus after switching off the current I0 flowing through the inductor the total work done by the current on the resistor R will be the energy stored by the magnetic field. That work can be calculated as the time integral of the power on the resistor:
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We can derive this result even without using the time dependence of the electric current just by applying the following relationships: 
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The inductor stores its energy in its magnetic field. In a local description it is not the global energy but the local energy density what really matters. To calculate the energy density we use the formula for the self-inductance of a solenoid derived earlier: 
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where   SYMBOL 109 \f "Symbol"  is the permeability of the medium inside the solenoid,  n is the number of its coils,   A  is its cross-section, and l  is its length. If we substitute L in the expression of the magnetic energy we obtain the following formula:
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wher  V  is the volume of the solenoid. Thus the density of the magnetic energy can be expressed as:


[image: image27.wmf].

2

1

.

B

H

×

=

MÁGNESES

E

r


We can remark, without giving a proof, that in the case of anisotropic media where H  and B are not necessarily collinear then the above expression H(B is the scalar product of the two vectors. The scalar product form is more general because it is valid for isotropic and anisotropic media as well. 

Explaining the high voltage appearing in switch off

Experiment: glow discharge lamp indicates a high voltage when switching off the current flowing through an inductor


When we switch off an electric instrument a high voltage appears as indicated often by an electric spark. If we connect a glow discharge lamp in parallel with an inductor the lamp will flash in the moment when the current is switched off. This can be surprising at a first glance as the current was maintained by a battery whose voltage is 5V while to produce a flash in the glow discharge lamp requires more than 90 V. How is this possible? To give a quantitative explanation let us regard the circuit diagrams in the last Figure. In Figure a) when switch K is closed the current flowing through the inductor is 
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When the switch is opened then the very same current starts to flow through resistor R. Thus the voltage on that resistor in the initial moment is 
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Consequently if R>>R0 then U0>>ε0. 
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